Skip to main content

Game Not** Over

Physicists have recently disproven a popular notion in theoretical science that humans are living in a simulated universe.  While for some, this may come as no shock, others, including high profile believers such as Tesla founder Elon Musk and astrophysicist Neil deGrasse Tyson, will be disinclined to believe such evidence.

Tesla founder Elon Musk has been outspoken about this theory, attempting to provide evidence on many such occasions.  Just this past year, Musk claimed that he was 99.9 percent certain that humans are living in a computer simulation (Rogers).  Musk stated that the advancements seen in technology over the past 40 years have been so drastic that they will continue and that soon it will be impossible to tell the difference between what is simulation and what is reality (Smart).  Arguments that favor the notion of a world of computer simulation where the simulation would not have to be an exact replica of what the actual reality is, it would just have to be close enough to that prototype (Eck).

However, a new study discovered that it would be impossible to evaluate our universe given the infinite number of body effects each person experiences.  It would be impossible to compute the equations necessary to create such a simulation (Rogers).  The physicists proved this to be impossible given "the sign problem", which shows that there is no solution (Eck).

Works Cited

Eck, Allison. “Physicists Confirm That We’Re Not Living In a Computer Simulation.” PBS, Public Broadcasting Service, 3 Oct. 2017, www.pbs.org/wgbh/nova/next/physics/physicists-confirm-that-were-not-living-in-a-computer-simulation/.

Rogers, Shelby. “New Study Says We Are Definitely Not Living in a Computer Simulation.” Interesting Engineering, Interesting Engineering, 25 Oct. 2017, interestingengineering.com/new-study-says-we-are-definitely-not-living-in-a-computer-simulation.

Smart, Riccardo Manzotti and Andrew. “Elon Musk Is Wrong. We Aren't Living in a Simulation.” Motherboard, Vice, 20 June 2016, motherboard.vice.com/en_us/article/yp3b7w/we-dont-live-in-a-simulation.



Comments

Popular posts from this blog

Physics of Sound Dampeners and Active Noise Cancellation

Physics of Sound Dampeners and Active Noise Cancellation Sound dampening foam panels in a recording studio. ANC headphones worn by pilots and/or passengers in consumer aviation aircraft.  Acoustic treatment of soundscapes has grown alongside the sound production industry. Whether through absorption panels, diffusors and cloud panels to treat a space or headphones placed directly over the ears of listeners, acoustic treatment comes in many forms. Environments are treated acoustically to absorb excess sound to prevent sound levels from crossing a threshold above which the desired goal cannot be had. Before getting into sound dampening, we must discuss sound. Sound is produced when an object vibrates (a form of oscillation) and temporarily displaces nearby air molecules causing a wave effect as the displaced molecules collide with their neighboring molecules. Sound waves are fluctuations in pressure as the initial displacement of molecules experiences collisions that in ...

Large Hadron Collider

The Large Hadron Collider (LHC) is the world’s largest and most powerful particle accelerator. The LHC is the largest machine in the world. It took thousands of scientists, engineers and technicians decades to plan and build, and it continues to operate at the very boundaries of scientific knowledge. It first started up on 10 September 2008, and remains the latest addition to CERN’s accelerator complex. The LHC consists of a 27-kilometre ring of superconducting magnets with a number of accelerating structures to boost the energy of the particles along the way. Map of LHC (located in Geneva, Switzerland) Thousands of magnets of different varieties and sizes are used to direct the beams around the accelerator.  Just prior to collision, another type of magnet is used to "squeeze" the particles closer together to increase the chances of collisions. The particles are so tiny that the task of making them collide is akin to firing two needles 10 kilometres apart with suc...

Physics Behind a Boomerang

A boomerang travels in more or less a circular path. The motion is a combination of various physical principles, for example, aerodynamic lift and circular motion. You have to get these physical principles just right when throwing a boomerang. Think of the two arms of a boomerang as being like the wings of an airplane. The faster they move through the air, the more lift they generate. A boomerang spins as it moves through the air and the combination of spin and forward speed means that some parts of the boomerang are moving faster than others. This means that the boomerang traveling sideways so the net lift is towards the center of the circle that you see the boomerang move on. Another important physical principle is the non-uniform lift. The non-uniform lift generates torque. This causes the gyroscopic effect to come into play. A spinning boomerang is really no different to a spinning gyroscope and the gyroscopic effect makes the boomerang turn around at just the right rate. An...