Skip to main content

Game Not** Over

Physicists have recently disproven a popular notion in theoretical science that humans are living in a simulated universe.  While for some, this may come as no shock, others, including high profile believers such as Tesla founder Elon Musk and astrophysicist Neil deGrasse Tyson, will be disinclined to believe such evidence.

Tesla founder Elon Musk has been outspoken about this theory, attempting to provide evidence on many such occasions.  Just this past year, Musk claimed that he was 99.9 percent certain that humans are living in a computer simulation (Rogers).  Musk stated that the advancements seen in technology over the past 40 years have been so drastic that they will continue and that soon it will be impossible to tell the difference between what is simulation and what is reality (Smart).  Arguments that favor the notion of a world of computer simulation where the simulation would not have to be an exact replica of what the actual reality is, it would just have to be close enough to that prototype (Eck).

However, a new study discovered that it would be impossible to evaluate our universe given the infinite number of body effects each person experiences.  It would be impossible to compute the equations necessary to create such a simulation (Rogers).  The physicists proved this to be impossible given "the sign problem", which shows that there is no solution (Eck).

Works Cited

Eck, Allison. “Physicists Confirm That We’Re Not Living In a Computer Simulation.” PBS, Public Broadcasting Service, 3 Oct. 2017, www.pbs.org/wgbh/nova/next/physics/physicists-confirm-that-were-not-living-in-a-computer-simulation/.

Rogers, Shelby. “New Study Says We Are Definitely Not Living in a Computer Simulation.” Interesting Engineering, Interesting Engineering, 25 Oct. 2017, interestingengineering.com/new-study-says-we-are-definitely-not-living-in-a-computer-simulation.

Smart, Riccardo Manzotti and Andrew. “Elon Musk Is Wrong. We Aren't Living in a Simulation.” Motherboard, Vice, 20 June 2016, motherboard.vice.com/en_us/article/yp3b7w/we-dont-live-in-a-simulation.



Comments

Popular posts from this blog

Physics of Black Holes...Or Lack Thereof

Isabella Jacavone To comprehend how the universe works, we must dwell into the most basic building blocks of existence; matter, energy, space, and time. NASA's  Physics of the Cosmos program involves cosmology, astrophysics, and fundamental physics intended to answer questions about the elusiveness of complex concepts such as black holes, neutron stars, dark energy, and gravitational waves. In this blog post, I'd like to elaborate on a subject that is very intriguing  to me; Black holes. And more specifically, what would happen if we got near one. A black hole is anything but a hole, but rather an immense amount of matter compacted into an extremely small area. A black hole is caused when, hypothetically, a star four times more massive than our sun collapses into a sphere no bigger than 600 square km. To put that in perspective, that's about the size of New York City. B lack holes were predicted by Einstein's theory of general relativity, which showed that when a...

The Physics of Spiderman

Over this past weekend after I finished working on my homework, I decided to relax and watch a few movies before going asleep. Among the movies I watched was Spider-Man 3 from 2007 and despite the movie flaws I was interested by the scenes that showed Spider Man shooting through the sky with the use of his webs that come out of his wrists. Due to this, I decided to make my blog post about the physics of Spider-Man's slingshot. After doing some research, I discovered just how much information there is on the physics of Spider-Man and how elements of Spider-Man can be used as examples for most topics learned in mechanics. For this investigation, I will not be using the horrible cliche and terrible CGI infested mess that Spider-Man 3 is but instead the all around superior Spider-Man movie of Spider-Man 2 to investigate the physics of Spider-Man's web propelled slingshot.  I want to talk about what happens in terms of physics when Spider-Man launches himself across a dista...

2017 Physics Nobel Prize - Capturing Gravitational Waves

 2017 Physics Nobel Prize - Capturing Gravitational Waves Gravitational Waves Captured by LIGO Who?  Rainer Weiss, Barry C. Barish, and Kip S. Thorne - LIGO/VIRGO Collarboration What?  Observation of gravitational waves for the first time using LIGO (Laser Interferometer Gravitational-Wave Observatory. Where?  Two locations in the US - Hanford and Livingston. (See figure 1) Figure 1: LIGO in the US When?  14 September 2015 HOW?  The scientists captured gravitational waves by using an interferometer. The LIGO interferometer is a more glamorous interferometer than the original Michelson interferometer. It works through using light waves to measure gravitational interference (i.e. waves). First, one needs to understand the parts of an interferometer. The LIGO interferometer (and most) is shaped as an L. It has two 4 km vacuum tunnel arms with a mirror at each end. At the center of the arms, there is a beam splitter. Th...