Skip to main content

The Proton Spin Puzzle

     Each particle in an atom has its own intrinsic spin. Since 1987, the physics community has been stumped by what is known as the "proton spin crisis". Previously it was believed that all nucleon spin to the quarks that comprise the nucleon. New research though from CERN, SLAC, and DESY show that only 30 percent of proton spin is actually because of quarks. Scientists have therefore been trying to find what makes the rest of the protons spin. They would usually just say it was due to quantum effects but with a new discovery made scientists can now go into further detail.
     Scientists have deciphered the nucleon spin as well as how various particles that make up the nucleon contribute to the spinning. By using the CSCS supercomputer they were able to calculate the formerly mysterious quantum effects, and parse out the relative contributions to nucleon spin constituent gluons, quarks, and sea quarks each make (Sea quarks are an intermediate state of quark-antiquark pairs that exist inside the nucleon, albeit briefly).
Image result for proton spin puzzle       They first assessed the quarks' true physical mass to accurately calculate their spin. This is easier said than done, since individual quarks and gluons cannot be isolated, as they are held together by the strong force — one of the four fundamental forces of physics. They were able to remove this challenge by fixing the mass of up and down quarks based on the mass of the pion. Other challenges that they faced were reducing statistical errors in calculating the spin contributions, and converting dimensionless values from simulations into measurable physical values. By getting around these challenges scientists were able to figure out this physics mystery. 

Researchers May Have Finally Solved a Decades Old Physics Mystery

Comments

Popular posts from this blog

Physics of Black Holes...Or Lack Thereof

Isabella Jacavone To comprehend how the universe works, we must dwell into the most basic building blocks of existence; matter, energy, space, and time. NASA's  Physics of the Cosmos program involves cosmology, astrophysics, and fundamental physics intended to answer questions about the elusiveness of complex concepts such as black holes, neutron stars, dark energy, and gravitational waves. In this blog post, I'd like to elaborate on a subject that is very intriguing  to me; Black holes. And more specifically, what would happen if we got near one. A black hole is anything but a hole, but rather an immense amount of matter compacted into an extremely small area. A black hole is caused when, hypothetically, a star four times more massive than our sun collapses into a sphere no bigger than 600 square km. To put that in perspective, that's about the size of New York City. B lack holes were predicted by Einstein's theory of general relativity, which showed that when a...

The Physics of Spiderman

Over this past weekend after I finished working on my homework, I decided to relax and watch a few movies before going asleep. Among the movies I watched was Spider-Man 3 from 2007 and despite the movie flaws I was interested by the scenes that showed Spider Man shooting through the sky with the use of his webs that come out of his wrists. Due to this, I decided to make my blog post about the physics of Spider-Man's slingshot. After doing some research, I discovered just how much information there is on the physics of Spider-Man and how elements of Spider-Man can be used as examples for most topics learned in mechanics. For this investigation, I will not be using the horrible cliche and terrible CGI infested mess that Spider-Man 3 is but instead the all around superior Spider-Man movie of Spider-Man 2 to investigate the physics of Spider-Man's web propelled slingshot.  I want to talk about what happens in terms of physics when Spider-Man launches himself across a dista...

2017 Physics Nobel Prize - Capturing Gravitational Waves

 2017 Physics Nobel Prize - Capturing Gravitational Waves Gravitational Waves Captured by LIGO Who?  Rainer Weiss, Barry C. Barish, and Kip S. Thorne - LIGO/VIRGO Collarboration What?  Observation of gravitational waves for the first time using LIGO (Laser Interferometer Gravitational-Wave Observatory. Where?  Two locations in the US - Hanford and Livingston. (See figure 1) Figure 1: LIGO in the US When?  14 September 2015 HOW?  The scientists captured gravitational waves by using an interferometer. The LIGO interferometer is a more glamorous interferometer than the original Michelson interferometer. It works through using light waves to measure gravitational interference (i.e. waves). First, one needs to understand the parts of an interferometer. The LIGO interferometer (and most) is shaped as an L. It has two 4 km vacuum tunnel arms with a mirror at each end. At the center of the arms, there is a beam splitter. Th...