Skip to main content

Why California's Musical Road Sounds Terrible

California's Musical Road

In 2008, the city of Lancaster, California built its first musical road. Lancaster is about a 1-hour drive north of downtown LA. The town selected the finale from the William Tell Overture, best known as the theme music from the old Lone Ranger TV program. That was an unfortunate choice of song, since the faster you drive, the better it sounds.

What Went Wrong? 

Sadly, this road was not done correctly. The grooves in the road were cut at the wrong length making William Tell Overture seem out of tune, but still having the correct rhythm. Every time the wheel hits a groove, it creates a little vibration. Where the grooves are spaced far apart, then these impulse are created one after the other at a slow rate and a low frequency note is created. When the grooves are close together the frequency of the note is higher because the impulses are created one after another more quickly. 

Frequency produced by road vs by frequency required by tune
The above graph shows the frequency of road when driven on compared to the correct frequency needed for the tune as designed in the original road construction plans. If the musical road was in tune, all the blue diamonds would lie on the red line. As you can see, they do not line up whatsoever.



Above shows the error that was made cutting the asphalt vs. the correct plans that were originally drawn up.

As Scott explains, it's a relatively simple matter to calculate how far apart to build the road grooves to generate the note you want. The mistake by the road crew was not accounting for the width of the grooves themselves.



Sources:
http://davidsd.org/2008/12/honda-needs-a-tune-up/
https://www.youtube.com/watch?time_continue=2&v=Ef93WmlEho0

Comments

Popular posts from this blog

Physics of Sound Dampeners and Active Noise Cancellation

Physics of Sound Dampeners and Active Noise Cancellation Sound dampening foam panels in a recording studio. ANC headphones worn by pilots and/or passengers in consumer aviation aircraft.  Acoustic treatment of soundscapes has grown alongside the sound production industry. Whether through absorption panels, diffusors and cloud panels to treat a space or headphones placed directly over the ears of listeners, acoustic treatment comes in many forms. Environments are treated acoustically to absorb excess sound to prevent sound levels from crossing a threshold above which the desired goal cannot be had. Before getting into sound dampening, we must discuss sound. Sound is produced when an object vibrates (a form of oscillation) and temporarily displaces nearby air molecules causing a wave effect as the displaced molecules collide with their neighboring molecules. Sound waves are fluctuations in pressure as the initial displacement of molecules experiences collisions that in ...

Large Hadron Collider

The Large Hadron Collider (LHC) is the world’s largest and most powerful particle accelerator. The LHC is the largest machine in the world. It took thousands of scientists, engineers and technicians decades to plan and build, and it continues to operate at the very boundaries of scientific knowledge. It first started up on 10 September 2008, and remains the latest addition to CERN’s accelerator complex. The LHC consists of a 27-kilometre ring of superconducting magnets with a number of accelerating structures to boost the energy of the particles along the way. Map of LHC (located in Geneva, Switzerland) Thousands of magnets of different varieties and sizes are used to direct the beams around the accelerator.  Just prior to collision, another type of magnet is used to "squeeze" the particles closer together to increase the chances of collisions. The particles are so tiny that the task of making them collide is akin to firing two needles 10 kilometres apart with suc...

Aerodynamics of a Golf Ball

One may wonder how a small golf ball can travel at incredibly high speeds for such long distances.  While the swing of the club is a major component, the structure of the golf ball is quite important.  Unlike a baseball or tennis ball, a golf ball has dimples all over it (usually 336 dimples).  These dimples allow the golf ball to travel without facing much air resistance.  This diagram shows how air travels around the golf ball. The dimples on the golf ball also prevent drag that would occur in the wake region, resulting in further distance.  Also due to the contact with the club during the swing, the golf ball has backspin during its entire flight.  This diagram shows the motion of the golf ball mid flight with the lift force of F. There are hundreds of different types of golf balls that a player can choose.  Some show little affect to a player's game while others can alter their performance completely.  Personally, I prefer Callaway Supers...