Skip to main content

Why California's Musical Road Sounds Terrible

California's Musical Road

In 2008, the city of Lancaster, California built its first musical road. Lancaster is about a 1-hour drive north of downtown LA. The town selected the finale from the William Tell Overture, best known as the theme music from the old Lone Ranger TV program. That was an unfortunate choice of song, since the faster you drive, the better it sounds.

What Went Wrong? 

Sadly, this road was not done correctly. The grooves in the road were cut at the wrong length making William Tell Overture seem out of tune, but still having the correct rhythm. Every time the wheel hits a groove, it creates a little vibration. Where the grooves are spaced far apart, then these impulse are created one after the other at a slow rate and a low frequency note is created. When the grooves are close together the frequency of the note is higher because the impulses are created one after another more quickly. 

Frequency produced by road vs by frequency required by tune
The above graph shows the frequency of road when driven on compared to the correct frequency needed for the tune as designed in the original road construction plans. If the musical road was in tune, all the blue diamonds would lie on the red line. As you can see, they do not line up whatsoever.



Above shows the error that was made cutting the asphalt vs. the correct plans that were originally drawn up.

As Scott explains, it's a relatively simple matter to calculate how far apart to build the road grooves to generate the note you want. The mistake by the road crew was not accounting for the width of the grooves themselves.



Sources:
http://davidsd.org/2008/12/honda-needs-a-tune-up/
https://www.youtube.com/watch?time_continue=2&v=Ef93WmlEho0

Comments

Popular posts from this blog

Physics of Black Holes...Or Lack Thereof

Isabella Jacavone To comprehend how the universe works, we must dwell into the most basic building blocks of existence; matter, energy, space, and time. NASA's  Physics of the Cosmos program involves cosmology, astrophysics, and fundamental physics intended to answer questions about the elusiveness of complex concepts such as black holes, neutron stars, dark energy, and gravitational waves. In this blog post, I'd like to elaborate on a subject that is very intriguing  to me; Black holes. And more specifically, what would happen if we got near one. A black hole is anything but a hole, but rather an immense amount of matter compacted into an extremely small area. A black hole is caused when, hypothetically, a star four times more massive than our sun collapses into a sphere no bigger than 600 square km. To put that in perspective, that's about the size of New York City. B lack holes were predicted by Einstein's theory of general relativity, which showed that when a...

The Physics of Spiderman

Over this past weekend after I finished working on my homework, I decided to relax and watch a few movies before going asleep. Among the movies I watched was Spider-Man 3 from 2007 and despite the movie flaws I was interested by the scenes that showed Spider Man shooting through the sky with the use of his webs that come out of his wrists. Due to this, I decided to make my blog post about the physics of Spider-Man's slingshot. After doing some research, I discovered just how much information there is on the physics of Spider-Man and how elements of Spider-Man can be used as examples for most topics learned in mechanics. For this investigation, I will not be using the horrible cliche and terrible CGI infested mess that Spider-Man 3 is but instead the all around superior Spider-Man movie of Spider-Man 2 to investigate the physics of Spider-Man's web propelled slingshot.  I want to talk about what happens in terms of physics when Spider-Man launches himself across a dista...

2017 Physics Nobel Prize - Capturing Gravitational Waves

 2017 Physics Nobel Prize - Capturing Gravitational Waves Gravitational Waves Captured by LIGO Who?  Rainer Weiss, Barry C. Barish, and Kip S. Thorne - LIGO/VIRGO Collarboration What?  Observation of gravitational waves for the first time using LIGO (Laser Interferometer Gravitational-Wave Observatory. Where?  Two locations in the US - Hanford and Livingston. (See figure 1) Figure 1: LIGO in the US When?  14 September 2015 HOW?  The scientists captured gravitational waves by using an interferometer. The LIGO interferometer is a more glamorous interferometer than the original Michelson interferometer. It works through using light waves to measure gravitational interference (i.e. waves). First, one needs to understand the parts of an interferometer. The LIGO interferometer (and most) is shaped as an L. It has two 4 km vacuum tunnel arms with a mirror at each end. At the center of the arms, there is a beam splitter. Th...