Skip to main content

Extra Credit Blog

What would happen if everyone jumped at once?

The current human population on Earth is estimated to be about 7.6 billion people. The global average body mass for a human is 62kg (it sounds small because in America our average is 80.7kg, about 180 pounds). The humans will be jumping, giving themselves potential energy mgh at their max height (about 0.5 meters for this analysis) and then that kinetic energy will be converted to kinetic energy that will be involved in the collision that hits the Earth. If a 62kg person accelerates toward the Earth at 9.8m/s^2 for 0.5 meters, mgh can be used to calculate the KE on impact.


m1 is the mass of all of the humans on Earth. This can be estimated to 7.6B*62= 471,200,000,000kg. If you assume that all of the humans on Earth jump 0.5 meters and use mgh to calculate the KE, then 235,600,000,000J=KE. 235.6GJ is an immense amount of energy, but this energy is facing a mass of 5.972 × 10^24 kg.

 If you consider "everyone jumping at once" to be an inelastic collision in which all of the kinetic energy of the humans is transferred to the Earth, we can model the system as

m1*v1=(m1+m2)v2

m1 is 471,200,000,000. 
0.5=1/2*9.8*t^2
0.5/4.9=t^2
t=0.1020408163 sec
vf=at, 9.8x0.10204= 0.999m/s

471,200,000,000*0.999=(471,200,000,000+5.972 × 10^24)v2
~(1/5.972 × 10^24)m/s.

For such a collision with numbers that are so unmatched a vf is meaningless, it is difficult to retain any information from this. 1 over the mass of the Earth in kg is an absurdly small number and proves that the Earth would move, but only a very small distance. In physics, we are accustomed to analyzing collisions that involve two masses of relatively comparable size. This results in a meaningful Vf that is logical. Because the mass of all of the people on Earth is only 0.000000000000789% (total human mass divided by earth mass equals 7.890154052x10^-14) it is difficult to retain useful information from this data.

I did find a video on this subject by one of my favorite YouTube channels on this topic that says if everyone jumped at once, the Earth would move, for an instant, about the distance of 1/100th of the width of a single hydrogen atom. 

https://youtu.be/jHbyQ_AQP8c
The answer is at about 2min in.

Comments

Popular posts from this blog

Physics of Sound Dampeners and Active Noise Cancellation

Physics of Sound Dampeners and Active Noise Cancellation Sound dampening foam panels in a recording studio. ANC headphones worn by pilots and/or passengers in consumer aviation aircraft.  Acoustic treatment of soundscapes has grown alongside the sound production industry. Whether through absorption panels, diffusors and cloud panels to treat a space or headphones placed directly over the ears of listeners, acoustic treatment comes in many forms. Environments are treated acoustically to absorb excess sound to prevent sound levels from crossing a threshold above which the desired goal cannot be had. Before getting into sound dampening, we must discuss sound. Sound is produced when an object vibrates (a form of oscillation) and temporarily displaces nearby air molecules causing a wave effect as the displaced molecules collide with their neighboring molecules. Sound waves are fluctuations in pressure as the initial displacement of molecules experiences collisions that in ...

Large Hadron Collider

The Large Hadron Collider (LHC) is the world’s largest and most powerful particle accelerator. The LHC is the largest machine in the world. It took thousands of scientists, engineers and technicians decades to plan and build, and it continues to operate at the very boundaries of scientific knowledge. It first started up on 10 September 2008, and remains the latest addition to CERN’s accelerator complex. The LHC consists of a 27-kilometre ring of superconducting magnets with a number of accelerating structures to boost the energy of the particles along the way. Map of LHC (located in Geneva, Switzerland) Thousands of magnets of different varieties and sizes are used to direct the beams around the accelerator.  Just prior to collision, another type of magnet is used to "squeeze" the particles closer together to increase the chances of collisions. The particles are so tiny that the task of making them collide is akin to firing two needles 10 kilometres apart with suc...

Aerodynamics of a Golf Ball

One may wonder how a small golf ball can travel at incredibly high speeds for such long distances.  While the swing of the club is a major component, the structure of the golf ball is quite important.  Unlike a baseball or tennis ball, a golf ball has dimples all over it (usually 336 dimples).  These dimples allow the golf ball to travel without facing much air resistance.  This diagram shows how air travels around the golf ball. The dimples on the golf ball also prevent drag that would occur in the wake region, resulting in further distance.  Also due to the contact with the club during the swing, the golf ball has backspin during its entire flight.  This diagram shows the motion of the golf ball mid flight with the lift force of F. There are hundreds of different types of golf balls that a player can choose.  Some show little affect to a player's game while others can alter their performance completely.  Personally, I prefer Callaway Supers...