Skip to main content

Snow Day

SNOW DAY BLOG

In this blog, the process of conservation of momentum can be displayed by the rolling of one snowball into another snowball of the same mass.
Each of the snowballs have the same mass of 0.225kg. When one was rolled at the other, the system can be described with the conservation of momentum equation.
 m1v1i+m2v2i=m1v1f+m2v2f
(.225)(3)+(.225)(1.2)=(.225)(0)+(.225)(.589)
These values for velocity could be found by using logger pro to pinpoint the movement and then finding the velocity in the x direction. 

The first graph shows the movement of the first snowball and the second shows the movement of the snowball hit by the first. 
In the end, there is some sort of error which does not allow me to show the conservation of momentum. There are a number of factors that could have caused this error. The points could not have been graphed 100% accurately on logger. Another problem could have been the snowballs themselves. The masses could have been slightly off and both snowballs were not perfectly spherical which resulted in slower velocities than expected. However, I can estimate the amount of kinetic energy lost in this situation by subtracting the final velocity from the initial. 
1/2(.225)(.589)^2 - 1/2(.225)(3)^2 = .039 - 1.0125 = -0.9735 Joules of kinetic energy lost in this collision. 

Comments

Popular posts from this blog

Physics of Black Holes...Or Lack Thereof

Isabella Jacavone To comprehend how the universe works, we must dwell into the most basic building blocks of existence; matter, energy, space, and time. NASA's  Physics of the Cosmos program involves cosmology, astrophysics, and fundamental physics intended to answer questions about the elusiveness of complex concepts such as black holes, neutron stars, dark energy, and gravitational waves. In this blog post, I'd like to elaborate on a subject that is very intriguing  to me; Black holes. And more specifically, what would happen if we got near one. A black hole is anything but a hole, but rather an immense amount of matter compacted into an extremely small area. A black hole is caused when, hypothetically, a star four times more massive than our sun collapses into a sphere no bigger than 600 square km. To put that in perspective, that's about the size of New York City. B lack holes were predicted by Einstein's theory of general relativity, which showed that when a...

Physics of Sound Dampeners and Active Noise Cancellation

Physics of Sound Dampeners and Active Noise Cancellation Sound dampening foam panels in a recording studio. ANC headphones worn by pilots and/or passengers in consumer aviation aircraft.  Acoustic treatment of soundscapes has grown alongside the sound production industry. Whether through absorption panels, diffusors and cloud panels to treat a space or headphones placed directly over the ears of listeners, acoustic treatment comes in many forms. Environments are treated acoustically to absorb excess sound to prevent sound levels from crossing a threshold above which the desired goal cannot be had. Before getting into sound dampening, we must discuss sound. Sound is produced when an object vibrates (a form of oscillation) and temporarily displaces nearby air molecules causing a wave effect as the displaced molecules collide with their neighboring molecules. Sound waves are fluctuations in pressure as the initial displacement of molecules experiences collisions that in ...

The Physics Behind the Rail Gun

Magnets and Magnetic Fields: Magnets are well known for their ability to repel and attract other magnets and various pieces of metal, but what people seldom understand are the physics at work that cause such occurrences. Magnets are everywhere, from within TV's and cellphones, to the Earth itself, and they are all producing magnetic fields. For a particle, a magnetic field can be defined to be "a vector quantity that is directed along the zero- force axis" with a magnitude equal to the dividend of the magnetic force and the product of the particle's charge and speed, and for a bar magnet, the field is best demonstrated as arcs going from one pole to the other. With that said, magnetic fields can also be created; the basic principle of electromagnetism is that the movement of electrons through a conductor produces a magnetic field in the region around the conductor. This is the fundamental principle behind the workings of the rail gun. Unlike a bar magnet, a ...