Skip to main content

Snow Day Blog



Last Tuesday, I decided to venture outside to my front porch and test conservation of momentum. I determined that the simplest method was to throw a snowball at a ball. I dug out a volleyball from my room, and a slightly-dusty cooking scale from our kitchen cabinet.  Using the scale, I found the approximate masses of the volleyball and the snowball. The volleyball weighted 260 grams and the snowball weighed 50 grams. I converted these to kilograms and got .260kg and .05kg. I threw the snowball at the volleyball…



… and missed.
I tried again…


… that's better.


I inserted the video in LoggerPro and used the program to find the velocities of the snowball and the volleyball. Everything was negative, so I flipped the axis in my calculations to eliminate the negatives for simplicity. Using LoggerPro, I found the average velocities in the x-direction for the snowball and the volleyball. The initial x velocity of the snowball was 5.362745475 m/s. The final x velocity of the volleyball was 0.6531473279 m/s. The volleyball was initially at rest so its initial momentum was 0. The snowball burst apart on impact so there was no real way to measure its final momentum. I just said it was 0.


pi = pf
m1v1i + m2v2i = m1v1f + m2v2f
m1= mass of the snowball = .05kg
m2 = mass of the volleyball = .260kg


pix = initial momentum in the x-direction
pfx = final momentum in the x-direction


pix = .05(5.362745475) + 0 = 0.26813727375 kgm/s
pfx = 0 + .260(0.6531473279) = 0.169818305254 kgm/s
Magnitude: 0.317389121385 kgm/s


Then, I found the average velocities in the y-direction. The snowball’s initial y velocity was 5.095071793 m/s and the volleyball’s final y velocity was 0.07838227402 m/s. Once again, I said the initial momentum of the volleyball was 0 and the final momentum of the snowball was 0.


piy = initial momentum in the y-direction
pfy = final momentum in the y-direction


piy = .05(5.095071793) + 0 = 0.25475358965 kgm/s
pfy = 0 + .260(0.07838227402) = 0.0203793912452 kgm/s

Magnitude:  0.255567429511 kgm/s

If momentum was conserved, the magnitude of the initial momentum would equal the magnitude of the final momentum. While the two values I calculated are close, they are not equal.
Some causes of this may be:
    • Errors in measurements
    • Rounding
    • Errors in the velocity of the volleyball
      • The points in LoggerPro were inaccurate because it was difficult to locate the center of the volleyball each time
    • The snowball breaking apart

A major cause of this discrepancy may be a loss of energy. This makes sense since upon impact, the snowball burst apart. Energy would have went into sending the bits of snow flying in different directions instead of into the volleyball. This lost amount of kinetic energy can be determined.

I found the magnitudes of the velocities of the snowball and the volleyball. The magnitude of the initial velocity of the snowball was 7.3972153953672 m/s, and the magnitude of the final velocity of the volleyball was .65783372733804 m/s.

KEi of snowball + KEi of volleyball - KE lost = KEf of snowball + KEf of volleyball
KE = ½ mv2

½(.05)(7.3972153953672)2 + 0 + KElost = 0 + ½(.260)(.65783372733804)2
1.36796989014 - KElost = 0.056256877667
KElost = 1.31171301247 J

So 1.31171301247 J of energy were lost in the collision between the snowball and the volleyball.

This little experiment was pretty neat, even if my hands were near frozen solid after. It was interesting to see what we're studying in class applied in the real world, as cold as it may be.

Comments

Popular posts from this blog

Physics of Sound Dampeners and Active Noise Cancellation

Physics of Sound Dampeners and Active Noise Cancellation Sound dampening foam panels in a recording studio. ANC headphones worn by pilots and/or passengers in consumer aviation aircraft.  Acoustic treatment of soundscapes has grown alongside the sound production industry. Whether through absorption panels, diffusors and cloud panels to treat a space or headphones placed directly over the ears of listeners, acoustic treatment comes in many forms. Environments are treated acoustically to absorb excess sound to prevent sound levels from crossing a threshold above which the desired goal cannot be had. Before getting into sound dampening, we must discuss sound. Sound is produced when an object vibrates (a form of oscillation) and temporarily displaces nearby air molecules causing a wave effect as the displaced molecules collide with their neighboring molecules. Sound waves are fluctuations in pressure as the initial displacement of molecules experiences collisions that in ...

Large Hadron Collider

The Large Hadron Collider (LHC) is the world’s largest and most powerful particle accelerator. The LHC is the largest machine in the world. It took thousands of scientists, engineers and technicians decades to plan and build, and it continues to operate at the very boundaries of scientific knowledge. It first started up on 10 September 2008, and remains the latest addition to CERN’s accelerator complex. The LHC consists of a 27-kilometre ring of superconducting magnets with a number of accelerating structures to boost the energy of the particles along the way. Map of LHC (located in Geneva, Switzerland) Thousands of magnets of different varieties and sizes are used to direct the beams around the accelerator.  Just prior to collision, another type of magnet is used to "squeeze" the particles closer together to increase the chances of collisions. The particles are so tiny that the task of making them collide is akin to firing two needles 10 kilometres apart with suc...

Aerodynamics of a Golf Ball

One may wonder how a small golf ball can travel at incredibly high speeds for such long distances.  While the swing of the club is a major component, the structure of the golf ball is quite important.  Unlike a baseball or tennis ball, a golf ball has dimples all over it (usually 336 dimples).  These dimples allow the golf ball to travel without facing much air resistance.  This diagram shows how air travels around the golf ball. The dimples on the golf ball also prevent drag that would occur in the wake region, resulting in further distance.  Also due to the contact with the club during the swing, the golf ball has backspin during its entire flight.  This diagram shows the motion of the golf ball mid flight with the lift force of F. There are hundreds of different types of golf balls that a player can choose.  Some show little affect to a player's game while others can alter their performance completely.  Personally, I prefer Callaway Supers...