Skip to main content

Physics of Lacrosse

Although physics is a prominent aspect in every sport, the physics of lacrosse identifies many different branches and topics relating to physics. As a lacrosse player, it is easy to see how physics affects the constant motion of the game.

First, lacrosse tests and accurately portrays Newton's first, second, and third laws.

Newton's first law states - An object at rest will remain at rest until acted upon by an external force.
In the game of lacrosse, it is important to cradle your stick in order to keep the ball in the net of your stick. Essentially, cradling your stick causes a centripetal force to act on ball as it is being cradled, which keeps it in the net as the stick is being rotated. As the player prepares to throw the ball, the centripetal force continues to act on the ball as the player throws it, and the ball's friction against the net keeps the ball in the pocket while the stick accelerates around.

 (below image shows the technical terms for each part of the head of the lacrosse stick)
Image result for images of a girl's lax stick with head terms

Newton's second law states - F=ma. Through this formula, it can be said that the acceleration applied to the ball during the throw determines the force of the pass, because the mass remains constant.

Newton's third law states - For every action there is an equal and opposite reaction. When swinging the stick to release the ball, the stretch in the netted pocket and the motion of the ball counteracts the force put into the swinging stick. Because there is work being applies to the stick, the ball is forced forward as a result.

 Furthermore, the draw (similar to a jump ball in a basketball game) portrays an important aspect of a physics concept. In the draw, equal force must be applied by both players in order to make the ball go up. If more force is applied by one player, than they will have more control of the ball and where it goes when it is released. The concept of the draw is difficult, and mastering the draw is even more complex. Below is an attached video of the concept of the draw in girl's lacrosse.

 

Analyzing torque: Passing a lacrosse ball is in fact a technical engagement. When preparing to pass the ball, you arm must remain level to build the appropriate throwing motion. In order to properly release the ball to the destined target, you must bull the stick backward with your bottom hand and push it forward with the upper hand. This motion is tricky, but with practice, you will create a level arm that will direct the ball to the desired target. By pivoting the stick through your upper hand, force is created in both the upper and lower hands, and large torque forces are generated which will allow the ball to be thrown at great distances. 

The video below explains the concepts of converting linear momentum into rotational momentum when winding up to shoot a lacrosse ball. When shooting the ball from a far distance away from the net, it is important to maintain the proper body angle to ensure the quickness of the ball's release time and accuracy on net. The farther an object is from its axis of rotation, the faster its linear speed.





Works Cited:

https://prezi.com/tyyecv-pwc-s/physics-of-lacrosse/
https://www.youtube.com/watch?v=Bhfw5R2U5mE
https://www.livestrong.com/article/487887-the-physics-behind-throwing-a-lacrosse-ball/

Comments

Popular posts from this blog

Physics of Sound Dampeners and Active Noise Cancellation

Physics of Sound Dampeners and Active Noise Cancellation Sound dampening foam panels in a recording studio. ANC headphones worn by pilots and/or passengers in consumer aviation aircraft.  Acoustic treatment of soundscapes has grown alongside the sound production industry. Whether through absorption panels, diffusors and cloud panels to treat a space or headphones placed directly over the ears of listeners, acoustic treatment comes in many forms. Environments are treated acoustically to absorb excess sound to prevent sound levels from crossing a threshold above which the desired goal cannot be had. Before getting into sound dampening, we must discuss sound. Sound is produced when an object vibrates (a form of oscillation) and temporarily displaces nearby air molecules causing a wave effect as the displaced molecules collide with their neighboring molecules. Sound waves are fluctuations in pressure as the initial displacement of molecules experiences collisions that in ...

Large Hadron Collider

The Large Hadron Collider (LHC) is the world’s largest and most powerful particle accelerator. The LHC is the largest machine in the world. It took thousands of scientists, engineers and technicians decades to plan and build, and it continues to operate at the very boundaries of scientific knowledge. It first started up on 10 September 2008, and remains the latest addition to CERN’s accelerator complex. The LHC consists of a 27-kilometre ring of superconducting magnets with a number of accelerating structures to boost the energy of the particles along the way. Map of LHC (located in Geneva, Switzerland) Thousands of magnets of different varieties and sizes are used to direct the beams around the accelerator.  Just prior to collision, another type of magnet is used to "squeeze" the particles closer together to increase the chances of collisions. The particles are so tiny that the task of making them collide is akin to firing two needles 10 kilometres apart with suc...

Aerodynamics of a Golf Ball

One may wonder how a small golf ball can travel at incredibly high speeds for such long distances.  While the swing of the club is a major component, the structure of the golf ball is quite important.  Unlike a baseball or tennis ball, a golf ball has dimples all over it (usually 336 dimples).  These dimples allow the golf ball to travel without facing much air resistance.  This diagram shows how air travels around the golf ball. The dimples on the golf ball also prevent drag that would occur in the wake region, resulting in further distance.  Also due to the contact with the club during the swing, the golf ball has backspin during its entire flight.  This diagram shows the motion of the golf ball mid flight with the lift force of F. There are hundreds of different types of golf balls that a player can choose.  Some show little affect to a player's game while others can alter their performance completely.  Personally, I prefer Callaway Supers...