Although physics is a prominent aspect in every sport, the physics of lacrosse identifies many different branches and topics relating to physics. As a lacrosse player, it is easy to see how physics affects the constant motion of the game.
First, lacrosse tests and accurately portrays Newton's first, second, and third laws.
Newton's first law states - An object at rest will remain at rest until acted upon by an external force.
In the game of lacrosse, it is important to cradle your stick in order to keep the ball in the net of your stick. Essentially, cradling your stick causes a centripetal force to act on ball as it is being cradled, which keeps it in the net as the stick is being rotated. As the player prepares to throw the ball, the centripetal force continues to act on the ball as the player throws it, and the ball's friction against the net keeps the ball in the pocket while the stick accelerates around.
(below image shows the technical terms for each part of the head of the lacrosse stick)

Newton's second law states - F=ma. Through this formula, it can be said that the acceleration applied to the ball during the throw determines the force of the pass, because the mass remains constant.
Newton's third law states - For every action there is an equal and opposite reaction. When swinging the stick to release the ball, the stretch in the netted pocket and the motion of the ball counteracts the force put into the swinging stick. Because there is work being applies to the stick, the ball is forced forward as a result.
Furthermore, the draw (similar to a jump ball in a basketball game) portrays an important aspect of a physics concept. In the draw, equal force must be applied by both players in order to make the ball go up. If more force is applied by one player, than they will have more control of the ball and where it goes when it is released. The concept of the draw is difficult, and mastering the draw is even more complex. Below is an attached video of the concept of the draw in girl's lacrosse.
Works Cited:
https://prezi.com/tyyecv-pwc-s/physics-of-lacrosse/
https://www.youtube.com/watch?v=Bhfw5R2U5mE
https://www.livestrong.com/article/487887-the-physics-behind-throwing-a-lacrosse-ball/
First, lacrosse tests and accurately portrays Newton's first, second, and third laws.
Newton's first law states - An object at rest will remain at rest until acted upon by an external force.
In the game of lacrosse, it is important to cradle your stick in order to keep the ball in the net of your stick. Essentially, cradling your stick causes a centripetal force to act on ball as it is being cradled, which keeps it in the net as the stick is being rotated. As the player prepares to throw the ball, the centripetal force continues to act on the ball as the player throws it, and the ball's friction against the net keeps the ball in the pocket while the stick accelerates around.
(below image shows the technical terms for each part of the head of the lacrosse stick)
Newton's second law states - F=ma. Through this formula, it can be said that the acceleration applied to the ball during the throw determines the force of the pass, because the mass remains constant.
Newton's third law states - For every action there is an equal and opposite reaction. When swinging the stick to release the ball, the stretch in the netted pocket and the motion of the ball counteracts the force put into the swinging stick. Because there is work being applies to the stick, the ball is forced forward as a result.
Furthermore, the draw (similar to a jump ball in a basketball game) portrays an important aspect of a physics concept. In the draw, equal force must be applied by both players in order to make the ball go up. If more force is applied by one player, than they will have more control of the ball and where it goes when it is released. The concept of the draw is difficult, and mastering the draw is even more complex. Below is an attached video of the concept of the draw in girl's lacrosse.
Analyzing torque: Passing a lacrosse ball is in fact a technical engagement. When preparing to pass the ball, you arm must remain level to build the appropriate throwing motion. In order to properly release the ball to the destined target, you must bull the stick backward with your bottom hand and push it forward with the upper hand. This motion is tricky, but with practice, you will create a level arm that will direct the ball to the desired target. By pivoting the stick through your upper hand, force is created in both the upper and lower hands, and large torque forces are generated which will allow the ball to be thrown at great distances.
The video below explains the concepts of converting linear momentum into rotational momentum when winding up to shoot a lacrosse ball. When shooting the ball from a far distance away from the net, it is important to maintain the proper body angle to ensure the quickness of the ball's release time and accuracy on net. The farther an object is from its axis of rotation, the faster its linear speed.
Works Cited:
https://prezi.com/tyyecv-pwc-s/physics-of-lacrosse/
https://www.youtube.com/watch?v=Bhfw5R2U5mE
https://www.livestrong.com/article/487887-the-physics-behind-throwing-a-lacrosse-ball/
Comments
Post a Comment