Skip to main content

The physics behind curling

Curling is hugely popular in Canada, and it's only been an Olympic sport since 1998, but its roots lie in medieval Scotland, where it once was known as "the roaring game" because that's the sound you hear as a curling stone rolls down the ice. The earliest known written reference, according to Wikipedia, dates back to 1541, but there is an inscribed curling stone with the date 1511. Those early stones looked nothing like the "rocks' used in curling today, and because they were so irregular in size, shape and texture, players had far less control over the stones' trajectories along the ice.

Today's curling stones are made of a special kind of granite from Scotland, with a handle attached to the top, the better to grip and rotate (ever so slightly) as a player releases the stone. That's how you get the slow gentle curl of the stone's trajectory, hence the name. 



Sweeping!!

When sweeping, pressure and speed of the brush head are key in slightly increasing the layer of moisture that builds up under the stone. One of the basic technical aspects of curling is knowing when to sweep. When the ice in front of the stone is swept, a stone will usually travel both farther and straighter.

Friction behind Curling
schematic of curling stone
It is a known fact that contact pressure with ice melts a very thin layer of water on the surface of the ice. This in turn decreases friction. Thus, the friction is inversely proportional to the amount of contact pressure with the ice.

Comments

Popular posts from this blog

Physics of Black Holes...Or Lack Thereof

Isabella Jacavone To comprehend how the universe works, we must dwell into the most basic building blocks of existence; matter, energy, space, and time. NASA's  Physics of the Cosmos program involves cosmology, astrophysics, and fundamental physics intended to answer questions about the elusiveness of complex concepts such as black holes, neutron stars, dark energy, and gravitational waves. In this blog post, I'd like to elaborate on a subject that is very intriguing  to me; Black holes. And more specifically, what would happen if we got near one. A black hole is anything but a hole, but rather an immense amount of matter compacted into an extremely small area. A black hole is caused when, hypothetically, a star four times more massive than our sun collapses into a sphere no bigger than 600 square km. To put that in perspective, that's about the size of New York City. B lack holes were predicted by Einstein's theory of general relativity, which showed that when a...

Physics of Sound Dampeners and Active Noise Cancellation

Physics of Sound Dampeners and Active Noise Cancellation Sound dampening foam panels in a recording studio. ANC headphones worn by pilots and/or passengers in consumer aviation aircraft.  Acoustic treatment of soundscapes has grown alongside the sound production industry. Whether through absorption panels, diffusors and cloud panels to treat a space or headphones placed directly over the ears of listeners, acoustic treatment comes in many forms. Environments are treated acoustically to absorb excess sound to prevent sound levels from crossing a threshold above which the desired goal cannot be had. Before getting into sound dampening, we must discuss sound. Sound is produced when an object vibrates (a form of oscillation) and temporarily displaces nearby air molecules causing a wave effect as the displaced molecules collide with their neighboring molecules. Sound waves are fluctuations in pressure as the initial displacement of molecules experiences collisions that in ...

The Physics Behind the Rail Gun

Magnets and Magnetic Fields: Magnets are well known for their ability to repel and attract other magnets and various pieces of metal, but what people seldom understand are the physics at work that cause such occurrences. Magnets are everywhere, from within TV's and cellphones, to the Earth itself, and they are all producing magnetic fields. For a particle, a magnetic field can be defined to be "a vector quantity that is directed along the zero- force axis" with a magnitude equal to the dividend of the magnetic force and the product of the particle's charge and speed, and for a bar magnet, the field is best demonstrated as arcs going from one pole to the other. With that said, magnetic fields can also be created; the basic principle of electromagnetism is that the movement of electrons through a conductor produces a magnetic field in the region around the conductor. This is the fundamental principle behind the workings of the rail gun. Unlike a bar magnet, a ...