Skip to main content

The Physics Behind Paper Airplanes

For years, people have been constructing paper airplanes. With almost endless possibilities on how to fold the plane, how should one decide on what folds are going to make his or her plane fly the farthest? Well, a paper airplane's flight is dependent on 4 major factors: thrust, drag, lift, and gravity.



- The thrust a paper airplane has is dependent on the throw. Thrust is the initial force that the thrower applies to the paper airplane. Even the best of paper airplanes has no chance of going anywhere if the throw is horrible.

- The drag is the air equivalent to friction. Drag is the air that pushes on the plane as it is flying, slowing it down. Drag is affected my the surface area of the plane. A plane that is larger will have more drag affecting it and pushing back on it harder.

- The lift component of a paper airplanes flight deals entirely with the plane's wings. Air moving over and under the plane's wings provides un upward lift force, keeping the plane in the air. The lift is the reason symmetry is essential in a paper airplane's design. If one wing has more air going over and under it, it will have more lift, and the paper airplane will get flipped to one side.

- The weight of the paper airplane also affects the plane's flight. Throughout the flight, gravity continues to pull the plane towards the ground.


Many people have attempted to find the perfect combination of thrust, drag, lift, and gravity in order to create the perfect paper airplane, but none have been as successful as John Collins, who designed the plane which currently holds the world record for distance. John managed to fold a plane that flew a distance of 226 feet.


With endless possibilities from long distance gliders to planes that essentially act like boomerangs, how will you fold your paper airplane?












Comments

Popular posts from this blog

Physics of Black Holes...Or Lack Thereof

Isabella Jacavone To comprehend how the universe works, we must dwell into the most basic building blocks of existence; matter, energy, space, and time. NASA's  Physics of the Cosmos program involves cosmology, astrophysics, and fundamental physics intended to answer questions about the elusiveness of complex concepts such as black holes, neutron stars, dark energy, and gravitational waves. In this blog post, I'd like to elaborate on a subject that is very intriguing  to me; Black holes. And more specifically, what would happen if we got near one. A black hole is anything but a hole, but rather an immense amount of matter compacted into an extremely small area. A black hole is caused when, hypothetically, a star four times more massive than our sun collapses into a sphere no bigger than 600 square km. To put that in perspective, that's about the size of New York City. B lack holes were predicted by Einstein's theory of general relativity, which showed that when a

Physics Behind Drone Flight

A drone flies by using its downward thrust and forcing air in a particular direction in order to sustain a certain speed as well as a specific height. In this video my friend and I had been flying a drone at exactly 4 mph which converts to 1.788 m/s. In this project, we will be determining the forces acting upon the drone in order to sustain a consistent flight in terms of velocity and height while excluding the effects of air resitance. The drone is flying at an angle of 28˚, this is found by extending the tilted axis of the drone to the horizontal and finding the angle with a protractor. From this angle we will be able to calculate the downward thrust and the acceleration of the drone that allows it to maintain its height and velocity during flight. When the mass of the drone is taken it results in 734 grams or .734 kilograms, which will also be used for the calculations within the project. The freebody diagram pictured above will alow us to derive the force equations f

Aerodynamics of a Golf Ball

One may wonder how a small golf ball can travel at incredibly high speeds for such long distances.  While the swing of the club is a major component, the structure of the golf ball is quite important.  Unlike a baseball or tennis ball, a golf ball has dimples all over it (usually 336 dimples).  These dimples allow the golf ball to travel without facing much air resistance.  This diagram shows how air travels around the golf ball. The dimples on the golf ball also prevent drag that would occur in the wake region, resulting in further distance.  Also due to the contact with the club during the swing, the golf ball has backspin during its entire flight.  This diagram shows the motion of the golf ball mid flight with the lift force of F. There are hundreds of different types of golf balls that a player can choose.  Some show little affect to a player's game while others can alter their performance completely.  Personally, I prefer Callaway Supersoft golf balls, but it is entirely