Skip to main content

Posts

The Physics Behind the Rail Gun

Magnets and Magnetic Fields: Magnets are well known for their ability to repel and attract other magnets and various pieces of metal, but what people seldom understand are the physics at work that cause such occurrences. Magnets are everywhere, from within TV's and cellphones, to the Earth itself, and they are all producing magnetic fields. For a particle, a magnetic field can be defined to be "a vector quantity that is directed along the zero- force axis" with a magnitude equal to the dividend of the magnetic force and the product of the particle's charge and speed, and for a bar magnet, the field is best demonstrated as arcs going from one pole to the other. With that said, magnetic fields can also be created; the basic principle of electromagnetism is that the movement of electrons through a conductor produces a magnetic field in the region around the conductor. This is the fundamental principle behind the workings of the rail gun. Unlike a bar magnet, a
Recent posts

The Physics Behind Paper Airplanes

For years, people have been constructing paper airplanes. With almost endless possibilities on how to fold the plane, how should one decide on what folds are going to make his or her plane fly the farthest? Well, a paper airplane's flight is dependent on 4 major factors: thrust, drag, lift, and gravity. - The thrust a paper airplane has is dependent on the throw. Thrust is the initial force that the thrower applies to the paper airplane. Even the best of paper airplanes has no chance of going anywhere if the throw is horrible. - The drag is the air equivalent to friction. Drag is the air that pushes on the plane as it is flying, slowing it down. Drag is affected my the surface area of the plane. A plane that is larger will have more drag affecting it and pushing back on it harder. - The lift component of a paper airplanes flight deals entirely with the plane's wings. Air moving over and under the plane's wings provides un upward lift force, keeping the plane in the

The physics behind curling

Curling is hugely popular in Canada, and it's only been an Olympic sport since 1998, but its roots lie in medieval Scotland, where it once was known as "the roaring game" because that's the sound you hear as a curling stone rolls down the ice. The earliest known written reference, according to Wikipedia, dates back to 1541, but there is an inscribed curling stone with the date 1511. Those early stones looked nothing like the "rocks' used in curling today, and because they were so irregular in size, shape and texture, players had far less control over the stones' trajectories along the ice. Today's curling stones are made of a special kind of granite from Scotland, with a handle attached to the top, the better to grip and rotate (ever so slightly) as a player releases the stone. That's how you get the slow gentle curl of the stone's trajectory, hence the name.  Sweeping!! When  sweeping , pressure and speed of the brush head are key in

Aerodynamics of a Golf Ball

One may wonder how a small golf ball can travel at incredibly high speeds for such long distances.  While the swing of the club is a major component, the structure of the golf ball is quite important.  Unlike a baseball or tennis ball, a golf ball has dimples all over it (usually 336 dimples).  These dimples allow the golf ball to travel without facing much air resistance.  This diagram shows how air travels around the golf ball. The dimples on the golf ball also prevent drag that would occur in the wake region, resulting in further distance.  Also due to the contact with the club during the swing, the golf ball has backspin during its entire flight.  This diagram shows the motion of the golf ball mid flight with the lift force of F. There are hundreds of different types of golf balls that a player can choose.  Some show little affect to a player's game while others can alter their performance completely.  Personally, I prefer Callaway Supersoft golf balls, but it is entirely

The Physics of a Good Pitch

A good pitch in baseball is entirely affected by the type of spin and the spin rate.  Each pitch spins in a different way depending on how the pitch is thrown.  For example, fastballs have a lower rate of backspin which causes them not to move too much.  Conversely, curveballs have a lot of top spin which makes them have a hard break once the pitch has reached its peak. Another thing that drastically affects the pitch may seem like very small differences, but in reality are very big impacts.  One of these is the height of the seams on the ball.  At the high school level, the seams are raised on every ball, which creates more friction.  This means that the ball moves slower, but also has a lot more movement.  This can impact each pitcher in a different way.  If someone is primarily a fastball dominant power pitcher, they would be negatively impacted by the ball because they could lose 1-2 miles per hour.  On the other hand, at the major league level, the seams are very low, which ben

Physics of Black Holes...Or Lack Thereof

Isabella Jacavone To comprehend how the universe works, we must dwell into the most basic building blocks of existence; matter, energy, space, and time. NASA's  Physics of the Cosmos program involves cosmology, astrophysics, and fundamental physics intended to answer questions about the elusiveness of complex concepts such as black holes, neutron stars, dark energy, and gravitational waves. In this blog post, I'd like to elaborate on a subject that is very intriguing  to me; Black holes. And more specifically, what would happen if we got near one. A black hole is anything but a hole, but rather an immense amount of matter compacted into an extremely small area. A black hole is caused when, hypothetically, a star four times more massive than our sun collapses into a sphere no bigger than 600 square km. To put that in perspective, that's about the size of New York City. B lack holes were predicted by Einstein's theory of general relativity, which showed that when a

Physics of Sound Dampeners and Active Noise Cancellation

Physics of Sound Dampeners and Active Noise Cancellation Sound dampening foam panels in a recording studio. ANC headphones worn by pilots and/or passengers in consumer aviation aircraft.  Acoustic treatment of soundscapes has grown alongside the sound production industry. Whether through absorption panels, diffusors and cloud panels to treat a space or headphones placed directly over the ears of listeners, acoustic treatment comes in many forms. Environments are treated acoustically to absorb excess sound to prevent sound levels from crossing a threshold above which the desired goal cannot be had. Before getting into sound dampening, we must discuss sound. Sound is produced when an object vibrates (a form of oscillation) and temporarily displaces nearby air molecules causing a wave effect as the displaced molecules collide with their neighboring molecules. Sound waves are fluctuations in pressure as the initial displacement of molecules experiences collisions that in turn